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The use of weighting schemes to improve the efficiency of 
a Fourier synthesis or that of the convergence of refinement 
of a structure by the least-squares method is now well 
recognized. Thus, it was suggested by Woolfson (1956) that 
when the positions of a few atoms (say P out of a total of 
N atoms) in a structure are known, a Fourier synthesis with 
weighted terms WIFN letup would reveal the unknown atoms 
better than the usual synthesis with terms IFMet~v where 
IFNI is the structure amplitude corresponding to the entire 
structure [i.e. corresponding to the N atoms, whose pos- 
ition vectors may be denoted by r j ( j=  1 to N)] and ctp is 
the phase of the contribution from the known P atoms. 
From probability arguments he showed that the functioM" 
We for a centrosymmetric crystal was of the form 

We = tanh X (1) 
where 

X =  IFNI IFPI/a~ (1 - a~) (2) 
and 

N P 
2 2 

j = l  i = 1  

In the absence of the 'true' structure amplitudes IFM of the 
structure, they may be replaced in (2) above by the observed 
structure amplitudes IFol and this necessarily involves a 
certain amount  of approximation, which is not serious if the 
observational errors are negligible. However, in order to 
be more specific, we shall still use IFNI in (2) and also in 
our subsequent discussions. It is convenient to recast (2) 
in terms of the normalized structure amplitudes yN= IFN[/ 
aN,  y P  = ]FPl/aP.  

Thus, (2) can be written 

X =  alyNyP/(1 -- aal) . (3) 
The weighting function? for a non-centrosymmetric crystal 
was worked out by Sim (1960) to be 

Wa = 11(2X)/Io(2X) (4) 
where lo(X) and l l (X)  are Bessel functions with imaginary 
argument of order zero and one respectively. In (4) X is 
the same as defined in (3). 

The problem of improving the efficiency of convergence 
of refinement of a structure when all the atoms are known 
but their positions are in error was first investigated by 
Qurashi & Vand (1953). This was improved upon by Vand 
& Pepinsky (1957) who approached the problem from 
probability considerations applying the statistical results 
of Luzzati (1952). The form of the weighting function ob- 
tained by them for a centrosymmetric crystal is 

Wc = tanh Y (5) 
where 

Y= D~vlFNI IF%l/a~(1 - D~v). (6) 
Here again, in order to be more specific, we have used 
IFNI, which may be replaced by the observed structure am- 
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? The subscripts C and A will be used to denote centrosym- 
metric and non-centrosymmetric (acentric) cases respectively. 

plitudes, involving the approximation mentioned earlier. 
In (6) above IF~vl corresponds to the calculated structure 
amplitudes corresponding to finite errors drj in the co- 
ordinates of the N atoms and DN stands for 

(cos 2 n i l .  drj)N (7) 

where H is the reciprocal vector, and the subscript N (7) 
denotes that the average is over the N atoms. It may be 
mentioned in this connexion that in the derivation of the 
results (5), (6) the usual conditions of Wilson statistics are 
to be satisfied, i.e. the number of atoms N is fairly large, 
and also that they are similar and randomly distributed in 
the structure. In terms of the normalized structure amplit- 
udes yN = IFNI/aN, y~ = IF%I/aN (6) can be written 

Y= DNyNy~/(1 -- D2) . (8) 

The result has been extended to the non-centrosymmetric 
case by Mazumdar (1964) who has shown that the weight- 
ing function is of the form 

WA = Ia (2 Y)/Io(2 Y) (9) 

where Y is as defined in (8). 
Obviously in applying the weighting functions (5) or (9) 

a knowledge is required of the value of DN which depends 
on the magnitude of the errors Arj. This may be obtained 
from a study of the variation of the reliability index with 
Bragg angle 0, as has been suggested by Luzzati (1952). 
Improved methods for the same purpose are also available 
for the centrosymmetric case (Vand & Pepinsky, 1957) and 
the non-centrosymmetric case (Mazumdar, 1964). 

Although it is implicit in the derivation of Woolfson and 
Sim it should be pointed out that their weighting functions 
are strictly valid only if the assumed positions of the known 
P atoms have no errors. The question now arises as to the 
nature of the weighting function to be used when only a 
part (P) of the atoms is known and these atoms have, in 
addition, errors Arj in their coordinates. It might be noticed 
first that the two individual cases discussed earlier are but 
limiting ones of this general case. In particular, the weight- 
ing functions may be seen to be strikingly similar in form 
for the two cases (compare (1) and (4) with (5) and (9) 
respectively). Thus, when only a part of the atoms is used 
in the structure factor calculations and these atoms have 
no errors in their coordinates, the parameter al enters the 
expression (3), while if all the atoms are used and these 
have finite errors in their coordinates, the parameter D~v = 
(cos 2 n i l .  Ar~)N enters (8) and its role is thus exactly 
similar to that of al. 

The answer to the general case turns out to be simple and 
it follows from the theory of the distribution of the observed 
and calculated structure factors which has been considered 
recently (Srinivasan & Ramachandran,  1965) for the above 
situation. It turns out that the form of the mathematical 
results for the normalized structure factors is the same as 
that for the two individual cases above, with the only differ- 
ence that a parameter aA=alDP takes the place of al or 
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D~v in the individual cases. In consequence the weighting 
functions for the general case can be simply written down 
as follows.~ Thus, for a centrosymmetric crystal it is given by 

Wc = tanh U (10) 

and for a non-centrosymmetric crystal, by 
WA = lx(2 U)/!o(2 U) (11) 

where 
U= aAy~y~/(1 - a 2) (12) 

and 
aA = al (cos 2 n i l .  dr~)p = a lDP.  (13) 

It  may be verified that when P =  N, al = 1 so that expres- 
sions (10) and (11) reduce to (8) and (9) respectively. On 
the other hand when the errors are all zero, Op = 1 so that 
aa=ax and expressions (10) and (11) reduce to (3) and (4) 
respectively. Thus, when finite errors exist in the coordin- 
ates of the known P atoms the effective value gets reduced 
from al to aiDe since Dp is always less than unity. 

In order to be able to apply (8) and (11) in practice, a 
knowledge is required of the parameter aa. Methods of 
obtaining this from the experimental data have been sug- 
gested and are discussed in the paper cited above (Srinivasan 
& Ramachandran,  1965). It involves mainly the evaluation 
of one or both of two parameters (Rx) and Z c which have 
been termed the normalized reliability index and the am- 
plitude correlation respectively and are gix on by 

XIIFNI- IF~,l/al [ 
RI = (14) 

XIFNI 

(go) = 271F~vl IF~,l (15) 
(XIF~vl 2 2:1F~,12) t • 

i" For a formal proof of the results see Srinivasan & Chan- 
drasekharan (1965). 

Both R~ and ( Z  c) as a function ofaA are available(Srinivasan 
& Ramachandran,  1965). It may be pointed out that since 
an involves De it is strongly dependent on the Bragg angle 
0, and hence the evaluation of the parameters R1 and ( Z  c) 
has to be done over a narrow region in the reciprocal space 
within which 0 can be assumed to be constant. One could 
thus obtain aA as a function of 0 which could then be used 
in (12). 

It may be pointed out, however, that  al though theoretic- 
ally the correct weighting functions to be used when the 
known atoms have errors in their atomic coordinates are 
given by (10) and (11), from the point of view of practical 
efficiency it becomes important, before applying these 
functions, to refine the coordinates of the known P atoms 
so as to minimize the errors in them. This is obvious from 
the nature of the functions. The larger the value of aA the 
larger will be the values of IV, the maximum value of aa 
for any given al being al which would correspond to no 
errors in the positions of the P atoms. Preliminary refine- 
ment of the known atoms would ensure a value of aA as 
close to a~ as possible. 
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With the experimental set-up shown in Fig. 1, we have 
studied the variation of the strain-optical ratios P12/Pll 
and Pgg/Pll+ PIE for a few cubic crystals in the wavelength 
range 2500-6000 ,~. Light from a 400-watt Hanovia arc 
after passing through an adjustable horizontal slit S is col- 
limated by the lens L1. The collimated beam then enters 
the crystal C under investigation, a double image prism D 
and finally the quartz prism Q of a medium quartz spectro- 
graph. When the length of the slit is suitably adjusted, the 
prominent lines of the mercury spectrum are recorded as 
two sets of horizontal lines, one above the other, on the 
photographic plate placed at PP (Fig. 1; see also Fig. 2). 
The crystal rests on the ultrasonic transducer T and when 
suitably excited a longitudinal standing wave is set up in it. 
This results in each spectral line being split up into a num- 
ber of diffraction orders giving rise to the familiar Hiede- 
mann  pattern. Mueller (1938; see also Bergmann & Fues, 
1936) has shown, on theoretical grounds, that  the ratio of 
the intensities of the corresponding diffraction lines of the 
mth order in the two polarized sets has the value B ° = R2m, 
where B ° is the limiting ratio of intensities when the sound 

amplitude is reduced to zero; and R=P12/Pll or  P l x +  
P12-  2P44/PI 1 + Piz + 2P44 depending on the direction of 
propagation of sound in the crystal along [100] or [110] 
respectively and the light beam travelling in a direction 
normal to that of sound along a cube axis. 
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Fig. 1. Experimental arrangement. S horizontal slit, L1 colli- 

mator lens, C crystal specimen, T transducer, D double 
image prism, A analyser, Q quartz prism, L2 camera lens, 
PP photographic plate. 


